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Abstract  —  The adaptive integral method (AIM) is used 

to accelerate the electromagnetic solution of dense 
integrated circuits inside metallic enclosures of rectangular 
cross section. The computational complexity and memory 
requirements for the proposed AIM-based electromagnetic 
solver scale as O(NlogN) and O(N), respectively, where N is 
the number of unknowns in the discrete approximation of 
the governing integral equation. The accuracy and 
efficiency of the solver is demonstrated through its 
application to the modeling of a shielded patch array used 
for spatial power combining.   

I. INTRODUCTION 

Dense planar and quasi-planar integrated circuits are 
becoming the norm in the development of multi-layered 
packages and substrates for the realization of compact, 
system-in-a-package (SIP) and system-on-a-chip (SOC) 
multi-functional designs. The interconnection density in 
the multi-layered substrates for such systems is so high 
that the number of unknowns in the matrix approximation 
of the governing electromagnetic equations for these 
problems is in the order of tens or even hundreds of 
thousands. Direct factorization of these matrices is 
computationally prohibitive. Furthermore, the iterative 
solution using state-of-the-art conjugate gradient methods 
becomes unattractive when the number of unknowns, N, is 
in the order of tens of thousands, since both memory 
requirements for the storage of the method-of-moments 
(MoM) matrix and the complexity of the matrix-vector 
products involved in the iteration scale as O(N2). Another 
class of electromagnetic problems inside rectangular 
waveguides that is hindered by excessive memory and 
computational complexity requirements is the class of the 
integrated, passive, planar and quasi-planar circuitry used 
in waveguide-based, spatial power combining systems [1]. 
In addition to high density, these systems tend to be 
electrically large, spanning several wavelengths in each 
direction. Consequently, the number of unknowns 
involved in their MoM solution becomes once again 
prohibitively large. 

To address the aforementioned complexity and establish a 
computationally efficient approach to the electromagnetic 
characterization of such high-density and/or electrically 
large planar and quasi-planar circuits, the AIM 
methodology of [2] is extended to the case where the 
electromagnetic structure of interest is placed inside a 

rectangular metallic waveguide. The computational 
complexity and memory requirements of the developed 
AIM-based iterative MoM solver scale as 

( log )O N N and ( )O N , respectively, thus enabling the 
expedient solution of very dense and electrically large 
shielded integrated circuits.     

II. MODIFIED AIM FOR WAVEGUIDES 

In the following, the fundamental steps in the mathematical 
development of a modified version of AIM suitable for 
structures shielded inside metallic, rectangular waveguides 
is presented. Without loss of generality and for the sake of 
simplicity in the mathematical formulation it is assumed 
that the integrated circuit structure is planar, and thus the 
unknown current densities exhibit only x and y 
components in the rectangular waveguide. The 
electromagnetic boundary value problem in the directions 
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Fig. 1. Generic geometry of a planar microstrip 
structure inside a metallic rectangular waveguide. 
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parallel to the cross section of the of interest is cast in 
integral equation form as follows, 

( , ) ( ) ( , ) ( ) ( )(1 )

( , ) ( ) ( , ) ( ) ( )(1 )

xx xy inc

x y xS S

yx yy inc

x y yS S

G r r J r ds G r r J r ds E r a

G r r J r ds G r r J r ds E r b

′ ′ ′ ′ ′ ′ ′⋅ + ⋅ =

′ ′ ′ ′ ′ ′ ′⋅ + ⋅ =

∫ ∫
∫ ∫

r r r r r r r
r r r r r r r

The relevant Green’s functions for the case of waveguides 
with layered dielectric filling are described in detail in [3],  
[4] and will not be repeated here. Even though the 
excitation is shown in terms of the incident fields of 
propagating and evanescent modes in the waveguide, 
arbitrary excitations in terms of localized sources can be 
handled also. The MoM approximation of (1) begins with 
the expansion of the unknown current densities in terms of 
a set of known basis functions 

( ) ( )

1

( , ) ( , )a

n

aN
a

a n
n

J Ix y f x y
=

= ∑ , where a and b assume 

the values x and y. Substitution of these expansions in (1), 
followed by a Galerkin’s testing process, leads to the 
following matrix form of the MoM approximation of the 
problem [3], 

 
xx xy x x

yx yy y y
=

     
     
     

Z Z I V

Z Z I V
 , (2) 

where the elements of the matrix abZ are the interactions 
between the basis functions in the expansions of the a and  
b  components of the unknown current densities. From the 

remaining terms in (2), the vectors  and x yI I contain the 
coefficients in the expansions, and the vectors 

 and x yV V describe the weighted forms of the excitation. 
For electrically large or dense circuits, iterative methods 
(e.g. conjugate gradient) are needed to solve (2). The 
computational complexity of such methods is dominated 

by the 2( )O N matrix-vector product in each iteration.  

AIM addresses this complexity by splitting of the 
product ⋅Z I  of MoM matrix and vector of current 
expansion coefficients into two parts. One part includes 
the “near-zone” interactions and the remaining includes 
the “far-zone” interactions. This splitting may be cast in 
the form,  

( )near far near near

MoM MoM AIM AIM⋅ = ⋅ + ⋅ = ⋅ + ⋅ − ⋅Z I Z I Z I Z I Z I Z I . (3) 

In the above equation, near

MoM
⋅Z I contains the interactions 

between closely spaced elements, separated by distances 
less than some threshold distance. These interactions are 

calculated using standard MoM. Clearly, the matrix near

MoM
Z  

is very sparse and the computational complexity of 
near

MoM
⋅Z I is ( )O N . The “far-zone” interactions are treated 

in a very different manner, as explained next. However, 
before we proceed any further, it is important to clarify that 

the distinction between “near-zone” and “far-zone” 
interactions is not based on electrical distance. Thus, the 
method can be applied with the same effectiveness for 
both electrically large and sub-wavelength size structures. 

First, a rectangular grid is laid over the entire waveguide 

cross-section. Each of the basis functions, ( ) ( , )a

n
f x y , in 

the current expansions is replaced by 2M equivalent 
“delta” sources,  

1 2 1 2

1 2

( ) ( ) ( ) ( ) ( )

, , , ,
1 1

ˆ ( ) ( )( ) ( )
M M

a a a a a

n n m m n m n m n
m m

f f x x y yr r δ δ
= =

= − −Λ∑∑r r; , (4) 

where 
1 2

( ) ( )

, ,{ , }a a

m n m nx y are the locations of the delta sources 

associated with the nth basis functions in the expansion of 
the a component of the current density. Various criteria 

may be used to specify the expansion coefficients ( )aΛ . 
Our investigation showed that a scheme based on a least 
square approximation of the waveguide eigen-modes is 
superior in term of approximation error to the multipole 
reproduction criteria [2] traditionally used in AIM for open 
structures. Substitution of (4) into the integrals that define 
the elements of the MoM matrix yields, 

( )
1 2 1 2

1 2 1 2

1 2 1 2

1 1 1 1
( ) ( )

, , 1 2 1 2 , ,

0 0 0 0

, | ,
K K K K

ab a ab b

mn k k m k k n

k k k k

Z G k x k y k x k y
− − − −

′ ′
′ ′= = = =

′ ′= Λ ∆ ∆ ∆ ∆ Λ∑∑∑∑ ,

where 1,... ; 1,. . .a bm N n N= = .                                (5) 

In the above equation, 1 2,K K are the total number of the 

AIM grid points along x and y, respectively. In matrix form, 
use of the above equivalence helps us rewrite the MoM 
matrix as follows, 

 ( ) ( )Tab a ab b= Λ ⋅ ⋅ ΛZ G . (6) 
Since only M2 delta sources are used in (4), the matrix 

( )aΛ has only 2 ,
a

M N a x⋅ =  or y , non-zero elements. In 

view of (5), (6), the matrix-vector product in the iterative 
solution of the MoM equation may be computed as, 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T Tx xx x x x xy y y

T Ty yx x x y yy y y
AIM

Λ ⋅ ⋅ Λ ⋅ + Λ ⋅ ⋅ Λ ⋅

Λ ⋅ ⋅ Λ ⋅ + Λ ⋅ ⋅ Λ ⋅

 
 ⋅ =
  

G I G I

G I G I
Z I (7) 

The complexity of the matrix-vector products in (7) is 
( log )O N N because the waveguide Green’s function for 

interactions between the delta sources on the rectangular 
grid can be written in the form, 

 
1 1 2 2 1 1 2 2

( ) ( )

1 2 1 2 1 2

( ) ( )
, ,3 4

1 1 2 2 1 1 2 2, ,( , ; , )ab ab ab ab

ab ab ab ab
k k k k k k k k

ab
k k k k k k k kG k k k k s s

s s′ ′ ′ ′+

′ ′ ′ ′+ − + −

− + +

′ ′ = + Γ

Γ + Γ

Γ
(8) 

where the coefficients ( ) , 1,2,3,4,ab

i
s i = assume values 

1± depending on the values of a and b. Due to the 
presence of the convolution/correlation terms in (8), FFT 
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can be implemented to reduce the 2( )O N of the matrix-

vector products in (7) to ( log )O N N . The FFT-based 

computation of (7) is summarized as follows: 

Initialization: Compute Green’s function 1 2,
ab

k kΓ  and its 

FFTs ( )abF Γ  on the grid 0,...,2( 1)1,2 1,2k K= − for 

,a x y= and ,b x y= . 

 
For each iteration of the iterative matrix solver, do: 

Step 1: Compute the products ( ) ( ),
T Tx x y yΛ ⋅ Λ ⋅I I and their 

FFTs { }( ) Tx xF Λ ⋅ I , { }( )Ty xF Λ ⋅ I . (Since the matrices 

( )aΛ are very sparse the matrix vector products are of 
( )O N complexity.)  

Step 2: Compute matrices xP  and yP as 

( ) ( )( ) ( )T Tax x x ay y ya ⋅ Λ ⋅ ⋅ Λ ⋅= +P G I G I                    

{ } { }
{ } { }

( )

( )

4
1 ( )

1

4
( )

1

Tx x
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ax ax
n n n

n

ay ay
n n n

n

F s F F

s F F

−

=

=

Λ ⋅

Λ ⋅

= Γ +


+ Γ 


∑

∑

I

I

                        (9) 

where { }1F −  denotes operation of inverse FFT. In (9) we 

assigned subscript n to FFT operators {}nF  to show that 

a certain rearrangement of indices [5] is required in 
addition to FFT in order to compute different 
convolution/correlation terms. 

Step 4: Compute the products ( ) ( ),
Tx x y yΛ ⋅ Λ ⋅P P , which 

are of ( )O N complexity since ( )xΛ and ( )yΛ  are sparse. 

It is straightforward to show that, for an iterative matrix 
solution with number of iterations iterN  the number of 

required operations scales as 4 logiterN N Nα , where 

logN Nα  is time per FFT operation. 

At each iteration, the above process calculates the 
product AIM ⋅Z I  (see (3)). While the calculation of the “far-

zone” interactions using the AIM process is accurate, the 
calculated “near-zone” interactions are not. Thus, the 

operation AIM ⋅Z I near

AIM− ⋅Z I is required to correct the 

calculation of the “near-zone” interactions by replacing the 
AIM calculated ones with those obtained using the  
“exact” MoM representation of the expansion function 
interactions (see (3)). These operations are of 

( )O N complexity. 

In addition to significant reduction in the computational 
complexity of the iterative solution, an AIM 
implementation helps to relax memory requirements. Since 
only the MoM matrix elements that describe the “near-

zone” interactions need to be stored, the 2( )O N overhead 

associated with the storage of the MoM matrix is avoided. 
Instead, storing of the “near-zone” interactions results in 
memory requirements of ( )O N . Furthermore, due to the 

Toeplitz/Hankel-like character of the Green’s function 
matrices on the AIM grid the memory requirements for 
them scale also as ( )O N . 

For the benefits of AIM to be meaningful, the “far-zone” 
interactions need be calculated with sufficient accuracy. 
This, in turn, is critically dependent on the accuracy of the 
equivalence defined in (4). 

  IV. NUMERICAL RESULTS 

To demonstrate the performance of the proposed AIM 
scheme for shielded structures we considered a six patch 
antenna array embedded in a rectangular waveguide. The 
problem geometry is shown on Fig. 1. The wide and narrow 
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walls of the waveguide are 2.286 and 1.0287 cm 
respectively. Patches are printed on a single layer dielectric 
slab of permittivity 2.33rε =  and thickness 2 .5cm=l . 
A detailed description of the remaining parameters of 
antenna can be found in [3].  

In Fig. 2 memory storage required by MoM and AIM 
versus number of unknowns is shown. One can see that 
the memory used by AIM grows linearly with the number 
of unknowns N, while the memory required for a standard 
MoM solution grows as N2. Such dramatic memory 
savings are possible because storage of the entire matrix 
Z is avoided in the AIM solution. Also it is noted that 

only a few elements of Z , the ones associated with near 
interactions, need to be computed. Hence the AIM scheme 
fills the matrix in O(N) CPU operations instead of O(N2) 
operations traditionally required by MoM.  

In Fig. 3 we demonstrate that AIM leads to O(N log N) 
CPU time complexity per iteration for the matrix-vector 
product ⋅Z I , compared to O(N2) complexity associated 
with the method of moments. Clearly, for a relatively low 
number of unknowns direct matrix-vector evaluation is 
faster. Time saving advantages for the iterative matrix 
solver in AIM implementation only becomes obvious 
when number of unknowns exceeds 103.  

Finally, to validate the formulation we computed the 
current distribution on the patches of the antenna 

structure and the associated S-parameters using both 
MoM and AIM in the frequency range from 7 to 10 GHz. 
As shown in Fig. 4 excellent agreement is observed 
between MoM and AIM solutions.   

V. CONCLUSION 

Implementation of fast techniques such as the adaptive 
integral method (AIM) becomes inevitable when the 
number of unknowns associated with a scattering problem 
is large. In this work we demonstrated how AIM can be 
utilized for the computationally efficient solution of planar 
structures shielded inside metallic waveguides.  
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