FAST ELECTROMAGNETIC ANALY SISOF DENSE SHIELDED
INTEGRATED CIRCUITSUSING THE ADAPTIVE INTEGRAL
METHOD (AIM)

Vladimir . Okhmatovski and Andreas C. Cangdlaris

Department of Electrical & Computer Engineering, Universty of Illinois & Urbana-Champaign, 1406 West
Green Street, Urbana, IL 61801, U.SA.

Abstract — The adaptive integral method (AIM) is used
to accelerate the electromagnetic solution of dense
integrated circuitsinside metallic enclosures of rectangular
cross section. The computational complexity and memory
requirements for the proposed AlM-based electromagnetic
solver scale as O(NlogN) and O(N), respectively, where N is
the number of unknowns in the discrete approximation of
the governing integral equation. The accuracy and
efficiency of the solver is demonstrated through its
application to the modeling of a shielded patch array used
for spatial power combining.

I. INTRODUCTION

Dense planar and quasi-planar integrated circuits are
becoming the norm in the development of multi-layered
packages and substrates for the realization of compact,
system-in-a-package (SIP) and systemon-a-chip (SOC)
multi-functional designs. The interconnection density in
the multi-layered substrates for such systems is so high
that the number of unknowns in the matrix approximation
of the governing electromagnetic equations for these
problems is in the order of tens or even hundreds of
thousands. Direct factorization of these matrices is
computationally prohibitive. Furthermore, the iterative
solution using state-of-the-art conjugate gradient methods
becomes unattractive when the number of unknowns, N, is
in the order of tens of thousands, since both memory
requirements for the storage of the method-of-moments
(MoM) matrix and the complexity of the matrix-vector
products involved in the iteration scale as O(N?). Another
class of electromagnetic problems inside rectangular
waveguides that is hindered by excessive memory and
computational complexity requirements is the class of the
integrated, passive, planar and quasi-planar circuitry used
in waveguide-based, spatial power combining systems [1].
In addition to high density, these systems tend to be
electrically large, spanning several wavelengths in each
direction. Consequently, the number of unknowns
involved in their MoM solution becomes once again
prohibitively large.

To address the aforementioned complexity and establish a
computationally efficient approach to the electromagnetic
characterization of such high-density and/or electrically
large planar and quasi-planar circuits, the AIM
methodology of [2] is extended to the case where the
electromagnetic structure of interest is placed inside a
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Fig. 1. Generic geometry of a planar microstrip
structure inside a metallic rectangular waveguide.

rectangular metallic waveguide. The computational
complexity and memory requirements of the developed
AlM-based iterative @ MoM  solver scale as
O(Nlog N)andO(N), respectively, thus enabling the
expedient solution of very dense and electrically large
shielded integrated circuits.

Il.MODIFIED AIM FOR WAVEGUIDES

In the following, the fundamental stepsin the mathematical
development of a modified version of AIM suitable for
structures shielded inside metallic, rectangular waveguides
is presented. Without loss of generality and for the sake of
simplicity in the mathematical formulation it is assumed
that the integrated circuit structure is planar, and thus the
unknown current densities exhibit only x and y
components in the rectangular waveguide. The
electromagnetic boundary value problem in the directions
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parallel to the cross section of the of interest is cast in
integral equation form asfollows,

(‘S)GXx (F,F9xJ, (FYdst+ @G”(F FOxJ (F9dst= E" (79 (1a)

QG” (7 .F9x3, ((9dst+ OG” (r F§xJ, (FYds= E"(79(1h)

The relevant Green’s functions for the case of waveguides
with layered dielectric filling are described in detail in [3],
[4] and will not be repeated here. Even though the
excitation is shown in terms of the incident fields of
propagating and evanescent modes in the waveguide,
arbitrary excitations in terms of localized sources can be
handled also. The MoM approximation of (1) begins with
the expansion of the unknown current densities in terms of
a set of known basis functions

Na
J.(X,y) = é 1@f @ (x,y) , where a and b assume
n=1
the values x and y. Substitution of these expansionsin (1),
followed by a Galerkin's testing process, leads to the
following matrix form of the MoM approximation of the
problem [3],
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where the elements of the matrix Z* are the interactions
between the basis functions in the expansions of the a and
b components of the unknown current densities. From the
remaining terms in (2), the vectors | and |’ contain the
coefficients in the expansions, and the vectors
V™ and V"’ describe the weighted forms of the excitation.
For electrically large or dense circuits, iterative methods
(e.g. conjugate gradient) are needed to solve (2). The
computational complexity of such methods is dominated
by the O(N ?) matrix-vector product in each iteration.

AIM addresses this complexity by splitting of the
product ZX4 of MoM matrix and vector of current
expansion coefficients into two parts. One part includes
the “near-zone” interactions and the remaining includes
the “far-zone” interactions. This splitting may be cast in
the form,

ZA=Zom A+Z A =2 A+(Z,,4-2704).3)

In the above equation, Z - X contains the interactions

between closely spaced elements, separated by distances
less than some threshold distance. These interactions are

calculated using standard MoM. Clearly, the matrix Z.""
is very sparse and the computational complexity of
Z™ A is O(N). The “far-zone” interactions are treated

in a very different manner, as explained next. However,
before we proceed any further, it isimportant to clarify that

the distinction between “near-zone” and “far-zone”
interactions is not based on electrical distance. Thus, the
method can be applied with the same effectiveness for
both electrically large and sub-wavelength size structures.

First, arectangular grid islaid over the entire waveguide

cross-section. Each of the basis functions, f“(x,y), in

the current expansions is replaced by M *equivalent
“delta’ sources,

fO(N) =M =a 8L, dx-x2)d(y- y). @

m=1m =1
where {x . ym '} are the locations of the delta sources

associated with the nth basis functionsin the expansion of
the a component of the current density. Various criteria
may be used to specify the expansion coefficients L @
Our investigation showed that a scheme based on a least
square approximation of the waveguide eigen-modes is
superior in term of approximation error to the multipole
reproduction criteria[2] traditionally used in AIM for open
structures. Substitution of (4) into the integrals that define
the elements of the MoM matrix yields,
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where ;m =1, N,:n=1,..N,- ®
In the above equation, K , K, are the total number of the

AIM grid points along x and y, respectively. In matrix form,
use of the above equivalence helps us rewrite the MoM
matrix asfollows,

Z* =L G L. 6)
Since only M? delta sources are used in (4), the matrix
L®hasonly M XN _, a=x or y, non-zero elements. In
view of (5), (6), the matrix-vector product in the iterative
solution of the M oM equation may be computed as,
él_m XGXXXL(X)Txl XL xnymeT x| yL:j
ZAIM A :? . . l:|(7)
@_(y) >ny XL(X) x| X + L(y) XGW ><L(y) XIVH
The complexity of the matrix-vector products in (7) is
O(N log N) because the waveguide Green’s function for

interactions between the delta sources on the rectangular
grid can be written in the form,

G (k, K, k&9 =

b
VG ikt lo-ks +S) Gl ekt kr <
8
S3 PG k- kS k+ke F 84 'G® K+ I8, ke,
where the coefficients s*’,i=1,2,3,4, assume values

+1depending on the values of a and b. Due to the
presence of the convolution/correlation terms in (8), FFT
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can be implemented to reduce the O(N?) of the matrix-
vector products in (7) to O(NlogN). The FFT-based
computation of (7) is summarized asfollows:

Initialization: Compute Green’s function G, and its

FFTs F(G®) on the grid ko =0....2(Ky 5 - 1) for

a=x,yandb=x,y.

For each iteration of the iterative matrix solver, do:

Step 1: Compute the products L ®" x1*, L' x1 ¥ and their
FFTs |:{|_<*’T x| } , F{L‘”T x| } . (Since the matrices
L™ are very sparse the matrix vector products are of
O(N) complexity.)

Step 2: Compute matrices P* and P as

Pa :Gax ><L(X)T >{><)+(sa)/ >(L(Y)T )d)’)

s
a s™F{c¥ Fn{L(”T ><|*} +
rjl ©
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where F~*{ } denotes operation of inverse FFT. In (9) we

:F'1
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assigned subscript nto FFT operators F, {} to show that

a certain rearrangement of indices [5] is required in
addition to FFT in order to compute different
convolution/correlation terms.

Step 4: Compute the products L xP*,L ' xP” | which

areof O(N) complexity since L ®and LY are sparse.
It is straightforward to show that, for an iterative matrix
solution with number of iterations N, the number of

required operations scales as 4N, _a Nlog N, where
aN logN istimeper FFT operation.

At each iteration, the above process calculates the
product Z ,,, ¥ (see(3)). Whilethe calculation of the“far-

zone” interactions using the AIM process is accurate, the
calculated “near-zone” interactions are not. Thus, the

operation Z, M -Z'00 X is required to correct the

calculation of the “near-zone” interactions by replacing the
AIM calculated ones with those obtained using the
“exact” MoM representation of the expansion function
interactions (see (3)). These operations are of
O(N) complexity.

In addition to significant reduction in the computational
complexity of the iterative solution, an AIM
implementation helps to relax memory requirements. Since
only the MoM natrix elements that describe the “near-

zone” interactions need to be stored, the O(N?*) overhead

associated with the storage of the MoM matrix is avoided.
Instead, storing of the “near-zone” interactions results in
memory requirements d O(N) . Furthermore, due to the

Toeplitz/Hankel-like character of the Green's function
matrices on the AIM grid the memory requirements for
them scale also as O(N) .

For the benefits of AIM to be meaningful, the “far-zone”
interactions need be calculated with sufficient accuracy.
This, inturn, is critically dependent on the accuracy of the
equivalence defined in (4).

IV.NUMERICAL REQULTS

To demonstrate the performance of the proposed AIM
scheme for shielded structures we considered a six patch
antenna array embedded in a rectangular waveguide. The
problem geometry is shown on Fig. 1. The wide and narrow
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walls of the waveguide are 2.286 and 1.0287 cm
respectively . Patches are printed on asingle layer dielectric
slab of permittivity e =2.33 and thickness ¢ = 2. 5cm -
A detailed description of the remaining parameters of
antennacan be found in [3].

In Fig. 2memory storage required by MoM and AIM
versus number of unknowns is shown. One can see that
the memory used by AIM grows linearly with the number
of unknowns N, while the memory required for a standard
MoM solution grows as N°. Such dramatic memory
savings are possible because storage of the entire matrix
Z is avoided in the AIM solution. Also it is noted that
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Fig.4 Magnitude of Sy; for the 6 patch antenna
embedded in arectangular waveguide

only afew elements of Z , the ones associated with near
interactions, need to be computed. Hence the AIM scheme
fills the matrix in O(N) CPU operations instead of O(N?)
operations traditionally required by MoM.

In Fig. 3 we demonstrate that AIM leads to O(N log N)
CPU time complexity per iteration for the matrix-vector
product Z ¥ , compared to O(N?) complexity associated
with the method of moments. Clearly, for a relatively low
number of unknowns direct matrix-vector evaluation is
faster. Time saving advantages for the iterative matrix
solver in AIM implementation only becomes obvious
when number of unknowns exceeds 10°.

Finally, to validate the formulation we computed the
current distribution on the patches of the antenna

structure and the associated S-parameters using both
MoM and AIM in the frequency range from 7 to 10 GHz.
As shown in Fig. 4 excellent agreement is observed
between MoM and AIM solutions.

V. CONCLUSION

Implementation of fast techniques such as the adaptive
integral method (AIM) becomes inevitable when the
number of unknowns associated with a scattering problem
is large. In this work we demonstrated how AIM can be
utilized for the computationally efficient solution of planar
structures shielded inside metallic waveguides.
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